Identification of a gene negatively affecting antibiotic production and morphological differentiation in Streptomyces coelicolor A3(2).

نویسندگان

  • Wencheng Li
  • Xin Ying
  • Yuzheng Guo
  • Zhen Yu
  • Xiufen Zhou
  • Zixin Deng
  • Helen Kieser
  • Keith F Chater
  • Meifeng Tao
چکیده

SC7A1 is a cosmid with an insert of chromosomal DNA from Streptomyces coelicolor A3(2). Its insertion into the chromosome of S. coelicolor strains caused a duplication of a segment of ca. 40 kb and delayed actinorhodin antibiotic production and sporulation, implying that SC7A1 carried a gene negatively affecting these processes. The subcloning of SC7A1 insert DNA resulted in the identification of the open reading frame SCO5582 as nsdA, a gene negatively affecting Streptomyces differentiation. The disruption of chromosomal nsdA caused the overproduction of spores and of three of four known S. coelicolor antibiotics of quite different chemical types. In at least one case (that of actinorhodin), this was correlated with premature expression of a pathway-specific regulatory gene (actII-orf4), implying that nsdA in the wild-type strain indirectly repressed the expression of the actinorhodin biosynthesis cluster. nsdA expression was up-regulated upon aerial mycelium initiation and was strongest in the aerial mycelium. NsdA has DUF921, a Streptomyces protein domain of unknown function and a conserved SXR site. A site-directed mutation (S458A) in this site in NsdA abolished its function. Blast searching showed that NsdA homologues are present in some Streptomyces genomes. Outside of streptomycetes, NsdA-like proteins have been found in several actinomycetes. The disruption of the nsdA-like gene SCO4114 had no obvious phenotypic effects on S. coelicolor. The nsdA orthologue SAV2652 in S. avermitilis could complement the S. coelicolor nsdA-null mutant phenotype.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Two-Component Systems Implied in Antibiotic Production in Streptomyces coelicolor

The abundance of two-component systems (TCSs) in Streptomyces coelicolor A3(2) genome indicates their importance in the physiology of this soil bacteria. Currently, several TCSs have been related to antibiotic regulation, and the purpose in this study was the characterization of five TCSs, selected by sequence homology with the well-known absA1A2 system, that could also be associated with this ...

متن کامل

¡ ects of extracellularATPon thephysiologyofStreptomyces coelicolor A 3 ( 2 )

Because ATP is an extracellular effector in animal and plant systems and derivatives of ATP, such as S-adenosylmethionine and cAMP, can control antibiotic production and morphological differentiation in Streptomyces, we hypothesized that extracellular ATP (exATP) can also affect physiologies of Streptomyces. We found that the addition of 10 mM exATP to Streptomyces coelicolor A3(2) cultures res...

متن کامل

The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation.

Deletion of most of the coding region of the ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) resulted in loss of ppGpp synthesis, both upon entry into stationary phase under conditions of nitrogen limitation and following amino acid starvation during exponential growth, but had no effect on growth rate. The relA mutant, which showed continued rRNA synthesis upon amino acid depleti...

متن کامل

EshA accentuates ppGpp accumulation and is conditionally required for antibiotic production in Streptomyces coelicolor A3(2).

Disruption of eshA, which encodes a 52-kDa protein that is produced late during the growth of Streptomyces coelicolor A3(2), resulted in elimination of actinorhodin production. In contrast, disruption of eshB, a close homologue of eshA, had no effect on antibiotic production. The eshA disruptant accumulated lower levels of ppGpp than the wild-type strain accumulated. The loss of actinorhodin pr...

متن کامل

Deletion of the signalling molecule synthase ScbA has pleiotropic effects on secondary metabolite biosynthesis, morphological differentiation and primary metabolism in Streptomyces coelicolor A3(2)

Streptomycetes have high biotechnological relevance as producers of diverse metabolites widely used in medical and agricultural applications. The biosynthesis of these metabolites is controlled by signalling molecules, γ-butyrolactones, that act as bacterial hormones. In Streptomyces coelicolor, a group of signalling molecules called SCBs (S. coelicolorbutanolides) regulates production of the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 188 24  شماره 

صفحات  -

تاریخ انتشار 2006